Introduction to the Chain Rule

Warm-up: Find $\frac{dy}{dx}$

1.
$$y = (x^2 + 3x)^2$$

2.
$$y = (x^2 + 3x)^3$$

3.
$$y = (x^2 + 3x)^9$$

4.
$$\sqrt{x^2 + 3x}$$

Chain Rule – For composite functions (______

Chain Rule

Given
$$h(x) = f(g(x))$$

$$h'(x) =$$

Examples: Find f'(x)

1.
$$f(x) = (2x + 5)^{10}$$

2.
$$f(x) = \frac{1}{4x-3}$$

3.
$$f(x) = (3x^2 - 2x + 1)^3$$

4.
$$f(x) = \frac{2}{x^3 + 2x - 3}$$

Introduction to the Chain Rule

Differentiation by the Chain Rule - Homework

Find the derivatives of the following:

1.
$$y = (3x - 8)^4$$

2.
$$y = (3x^2 + 2)^5$$

3.
$$y = 4(x^2 + x - 1)^{10}$$

4.
$$y = -5(4 - 9x)^{3/2}$$

5.
$$y = \frac{1}{3x - 2}$$

6.
$$y = \frac{-1}{\left(x^2 - 5x - 6\right)^2}$$

7.
$$y = \left(\frac{2}{2-x}\right)^2$$

8.
$$y = \frac{4x}{(x+1)^2}$$

9.
$$y = \frac{-3}{\left(x^3 - x^2 + 3\right)^3}$$

10.
$$y = x^3 (5x - 1)^4$$

11.
$$y = \sqrt{1-t}$$

12.
$$y = \sqrt[3]{3x^3 - 4x + 2}$$

13.
$$y = \frac{2}{\sqrt{2x+3}}$$

14.
$$y = \frac{-1}{\sqrt{x} + 1}$$

15.
$$y = \sqrt{\frac{3x}{2x - 3}}$$